CS 320
Fundamentals of Software Engineering

Lecture 1: Overview
Introduction

• Instructor

• Xinghui Zhao

• Email: x.zhao@wsu.edu

• Phone: 360-546-9110

• Office: VECS 201X

• Office Hours: When door is open or by appointment
CS 320

Location: VSCI 12

Time: T, Th 1:25pm - 2:40pm

Webpage:

- http://dsr.encs.vancouver.wsu.edu/Teaching/320/

- ANGEL for submitting assignments (http://lms.wsu.edu)
Big Picture

- Software Engineering Courses
 - CS320 (this one)
 - CS420/421 (Brand new capstone course)
 - CS420 Software Design Project I (Fall 2015) - taught by Dr. Zhao
 - CS421 Software Design Project II (Spring 2016) - taught by Dr. Cochran
Class Rules

- Cell phones and beepers should be turned off
- Laptop is allowed, but no facebook, no twitters
- Promptness: class starts at 1:25pm sharp
- Coming late is fine as long as you don’t disturb the class
Course Text

✧ Required text:

✧ Software Engineering (9th Edition), Ian Sommerville, Addison Wesley Inc.

✧ Reference Materials:

✧ UML Distilled (3rd Edition), Martin Fowler, Addison Wesley Inc.

✧ The Mythical Man-Month, Frederick P. Brooks, Addison Wesley Inc.
Eric Klinginsmith

eric.klinginsmith@email.wsu.edu
Prerequisites

- Prerequisites
 - CS 224 Programming Tools
 - Math 216 Discrete Structures
 - Engl 402 Technical Writing (concurrent enrollment allowed)

- Prerequisite Topics
 - Object-oriented programming languages
 - Principles of technical writing
 - Use of UNIX or Windows environment for coding, compilation, debugging, and testing
Topics

• Object-oriented design and programming
• Software requirements and specification
• Software engineering processes
• Test and debugging
Evaluation

* Assignments and project 50%
* Midterm 20%
* Final Exam 25%
* Discretionary 5%

<table>
<thead>
<tr>
<th>Grade</th>
<th>Range</th>
<th>Grade</th>
<th>Range</th>
<th>Grade</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>94 - 100%</td>
<td>A-</td>
<td>91 - 93 %</td>
<td>B+</td>
<td>87 - 90%</td>
</tr>
<tr>
<td>B-</td>
<td>80 - 82%</td>
<td>C+</td>
<td>77 - 79%</td>
<td>C</td>
<td>73 - 76%</td>
</tr>
<tr>
<td>D+</td>
<td>68 - 70%</td>
<td>D</td>
<td>62 - 67%</td>
<td>D-</td>
<td>60 - 61%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>83 - 86%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C-</td>
<td>71 - 72%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F</td>
<td>≤ 59%</td>
</tr>
</tbody>
</table>
Academic Integrity

- Do not cheat
- To avoid plagiarism
 - Put pens away when discussing problem with other people
 - Acknowledge any help you received in your assignments: state name of person
- Write your own code
What is Software

- Software is

 - instructions (computer programs) that when executed provide desired features, function, and performance
 - data structures that enable the programs to adequately manipulate information
 - documentation that describes the operation and use of the programs
What is Software?

- Software is developed or engineered, it is not manufactured in the classical sense
- Software doesn’t “wear out”
- Although the industry is moving toward component-based construction, most software continues to be custom-built
Wear Vs. Deterioration

Q: What about hardware?
What is Software Engineering?

* Software engineering is concerned with theories, methods, and tools for the development of quality software to help solve problems
Why SE is important?

- The economies of all developed nations are dependent on software
- More and more systems are software controlled
- Software engineering expenditure represents a significant fraction of GNP in all developed countries
How can things go wrong?

THE LIFE OF A SOFTWARE ENGINEER.

Clean slate. Solid foundations. This time I will build things the right way.

MUCH LATER...

Oh my. I’ve done it again, haven’t I?
How can things go wrong?
What is the difference between software engineering and computer science

* Computer science is concerned with theory and fundamentals

* Software engineering is concerned with using computer theory, languages etc. to implement a solution to a problem
A Layered Technology

Software Engineering
The Essence of Practice

- Understand the problem
 - Communication and analysis
- Plan a solution
 - Modeling and software design
- Carry out the plan
 - Code generation
- Examine the result for accuracy
 - Testing and quality assurance
Hooker’s General Principles

- 1: The Reason It All Exists
- 2: KISS (Keep It Simple, Stupid!)
- 3: Maintain the Vision
- 4: What You Produce, Others Will Consume
- 5: Be Open to the Future
- 6: Plan Ahead for Reuse
- 7: Think!
Pre-project Survey

- To find out where you are...